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We study the transition from laminar flow to fully developed turbulence for an
inertially driven von Kármán flow between two counter-rotating large impellers fitted
with curved blades over a wide range of Reynolds number (102 − 106). The transition
is driven by the destabilization of the azimuthal shear layer, i.e. Kelvin–Helmholtz
instability, which exhibits travelling/drifting waves, modulated travelling waves and
chaos before the emergence of a turbulent spectrum. A local quantity – the energy
of the velocity fluctuations at a given point – and a global quantity – the applied
torque – are used to monitor the dynamics. The local quantity defines a critical
Reynolds number Rec for the onset of time-dependence in the flow, and an upper
threshold/crossover Re t for the saturation of the energy cascade. The dimensionless
drag coefficient, i.e. the turbulent dissipation, reaches a plateau above this finite Re t , as
expected for ‘Kolmogorov’-like turbulence for Re → ∞. Our observations suggest that
the transition to turbulence in this closed flow is globally supercritical: the energy of
the velocity fluctuations can be considered as an order parameter characterizing the
dynamics from the first laminar time-dependence to the fully developed turbulence.
Spectral analysis in the temporal domain, moreover, reveals that almost all of the
fluctuation energy is stored in time scales one or two orders of magnitude slower than
the time scale based on impeller frequency.

1. Introduction
Hydrodynamic turbulence is a key feature of many common fluid mechanics

problems (Tennekes & Lumley 1972; Lesieur 1990). In a few ideal cases, exact
solutions of the Navier–Stokes equations are available, based on several assumptions
such as auto-similarity, stationarity, or symmetry (for a collection of examples, see
Schlichting 1979). Unfortunately, they are often irrelevant in practice, because they are
unstable. Two of the simplest examples are the centrifugal instability of the Taylor–
Couette flow between two concentric cylinders, and the Rayleigh–Bénard convection
between two differentially heated plates: once the amount of angular momentum
or heat becomes too great to be carried by molecular diffusion, a more efficient
convective transport arises. Increasing further the control parameter in these two
examples, secondary bifurcations occur, leading rapidly to temporal chaos, and/or to
spatio-temporal chaos, then to turbulence.
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Several approaches have been taken in parallel concerning developed turbulence,
focused on statistical properties of flow quantities at small scales (Frisch 1995) or
taking into account the persistence of coherent structures in a more deterministic
point of view (Tennekes & Lumley 1972; Lesieur 1990). One of the major difficulties
concerning a self-consistent statistical treatment of turbulence is that it depends on
the flow in which it takes place (for instance wakes, jets or closed flows). At finite
Reynolds number, Re, most turbulent flows could still keep some average geometrical
or topological properties of the laminar flow (for example the presence of a Bénard–
von Kármán street in the wake of a bluff body whatever the values of Re), which
could still influence its statistical properties (Zocchi et al. 1994; La Porta et al. 2001;
Ouellette et al. 2006).

Furthermore, we have recently shown for a von Kármán flow that a turbulent
flow can exhibit multistability, first-order bifurcations and can even keep traces of
its history at very high Reynolds number (Ravelet et al. 2004). The observation of
this turbulent bifurcation led us to study the transition from the laminar state to
turbulence in this inertially driven closed flow.

1.1. Overview of the von Kármán swirling flow

1.1.1. Instabilities of the von Kármán swirling flow between flat disks

The disk flow is an example where exact Navier–Stokes solutions are available. The
original problem of the flow of a viscous fluid over an infinite rotating flat disk was
considered by von Kármán (1921). Experimentally, the problem of an infinite disk in
an infinite medium is difficult to address. The addition of a second coaxial disk was
proposed by Batchelor (1951) and Stewartson (1953). A cylindrical housing can also
be added. Instabilities and transitions have been extensively studied in this system
for instance Mellor, Chapple & Stokes 1968; Harriott & Brown 1984; Escudier 1984;
Sørensen & Christensen 1995; Gelfgat, Bar-Yoseph & Solan 1996; Spohn, Mory &
Hopfinger 1998; Gauthier, Gondret & Rabaud 1999; Schouveiler, Le Gal & Chauve
2001; Nore et al. 2003, 2004; Nore, Moisy & Quartier 2005). The basic principle of
this flow is the following: a layer of fluid is carried near the disk by viscous friction
and is thrown outwards by the centrifugal force. By incompressibility of the flow, fluid
is pumped toward the centre of the disk. Since the review of Zandbergen & Dijkstra
(1987), this family of flow has been called ‘von Kármán swirling flow’. In all cases, it
deals with the flow between smooth disks, at low Reynolds numbers, enclosed or not
in a cylindrical container.

1.1.2. The ‘French washing machine’: an inertially driven, highly turbulent
von Kármán swirling flow

Experimentally, the so-called ‘French washing-machine’ has been a basis for
extensive studies of very high-Reynolds-number turbulence in the last decade
(Douady, Couder & Brachet 1991; Fauve, Laroche & Castaing 1993; Zocchi et al.
1994; Cadot, Douady & Couder 1995; Labbé, Pinton & Fauve 1996; Tabeling et al.
1996; Cadot et al. 1997; La Porta et al. 2001; Moisy et al. 2001; Bourgoin et al. 2002;
Titon & Cadot 2003; Leprovost, Marié & Dubrulle 2004; Marié & Daviaud 2004;
Ravelet et al. 2004). To reach a Kolmogorov regime in these studies, a von Kármán
flow is inertially driven between two disks fitted with blades, at a very high Reynolds
number (105 � Re � 107). Owing to the inertial stirring, very high turbulence levels
can be reached, with fluctuations up to 50% of the blade velocity, as we shall see in
this article.
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Most of the inertially driven von Kármán setups studied in the past dealt with
straight blades. Von Kármán flows with curved-blade impellers were first designed
by the VKS-team to study dynamo action in liquid sodium (Bourgoin et al. 2002;
Monchaux et al. 2007). With curved blades, the directions of rotation are no longer
equivalent. One sign of the curvature, i.e. with the convex face of the blades forward,
direction (+), has been shown to be the most favourable for dynamo action (Marié
et al. 2003; Ravelet et al. 2005; Monchaux et al. 2007). The turbulent bifurcation
(Ravelet et al. 2004) has been obtained with the concave face of the blades forward,
direction (−). In this last work, the respective role of the turbulent fluctuations
and of the changes in the mean flow with increasing the Reynolds number on the
multistability were discussed.

1.2. Outline of the present article

Our initial motivation for the present study was thus to obtain an overview of the
transition to turbulence and to check the range in which multistability exists. We first
describe the experimental setup, the fluid properties and the measurement techniques
in § 2. The main data presented in this article are obtained by driving our experiment
continuously from laminar to turbulent regimes for this negative direction of rotation,
covering a wide range of Reynolds numbers. In § 3 and § 4 we characterize the basic
flow and describe the transition from the laminar regime to turbulence through
quasi-periodicity and chaos and explore the construction of the temporal spectrum
of velocity fluctuations. The continuity and global supercriticality of the transition to
turbulence is a main result of this article.

In § 5 we obtain complementary data by comparing the two different directions of
rotation and the case with a smooth disk. We show how inertial effects clearly lead
to differences for the two directions of rotation at high Reynolds numbers. We then
summarize and discuss the main results in § 6.

2. Experimental setup
2.1. Dimensions, symmetries and control parameter

The cylinder radius and height are, respectively, Rc =100 mm and Hc = 500 mm. A
sketch of the experiment is shown in figure 1(a). We use bladed disks to ensure inertial
stirring. The impellers consist of 185 mm diameter stainless-steel disks each fitted with
16 curved blades, of curvature radius 50 mm and of height h = 20 mm (figure 1b).
The distance between the inner faces of the disks is H = 180 mm, which defines a flow
volume of aspect ratio H/Rc = 1.8. With the curved blades, the directions of rotation
are no longer equivalent and we can either rotate the impellers anticlockwise, with
the convex face of the blades forward, direction (+), or clockwise, with the concave
face of the blades forward, direction (−).

The impellers are driven by two independent brushless 1.8 kW motors, with speed
servo-loop control. The maximal torque they can reach is 11.5 Nm. The motor
rotation frequencies {f1; f2} can be varied independently in the range 1 � f � 15 Hz.
Below 1 Hz, the speed regulation is not efficient, and the dimensional quantities are
measured with insufficient accuracy. We will take for exact counter-rotating regimes
f1 = f2 the imposed speed of the impellers f .

The experimental setup is thus axisymmetric and symmetric for rotations of π
around any radial axis passing through the centre O (Rπ-symmetry), and we will
consider here only Rπ-symmetric mean solutions, though mean flows breaking this
symmetry do exist for these impellers, at least at very high Reynolds numbers



342 F. Ravelet, A. Chiffaudel and F. Daviaud

f  > 0 

f  > 0 

Rc

H

z

rO

(a)

–

+

R

(b)

Figure 1. (a) Sketch of the experiment. The flow volume between the impellers is of height
H =1.8Rc . (b) Impellers used in this experiment. The disks radius is R = 0.925Rc and they
are fitted with 16 curved blades: the two different directions of rotation defined here are not
equivalent. This model of impellers has been used in the VKS1 sodium experiment (Bourgoin
et al. 2002) and is called TM60.

(Ravelet et al. 2004). A detailed study of the Reynolds number dependence of the
‘global turbulent bifurcation’ is outside of the scope of the present article and will be
presented elsewhere. Also, since we drive the impellers independently, there is always
a tiny difference between f1 and f2 and the Rπ-symmetry of the system cannot be
considered as exact. In the following, we will use this symmetry as it is very useful to
describe the observed patterns, but we will keep in mind that our system is only an
approximation of a Rπ-symmetric system. The consequences for the dynamics will be
analysed in the discussion (§ 6.1).

In the following, all lengths will be expressed in units of Rc. We also use cylindrical
coordinates {r; z} with origin on the axis of the cylinder and equidistant from the
two impellers to take advantage of the Rπ-symmetry (see figure 1a). The time unit is
defined using the impeller rotation frequency f . The integral Reynolds number Re is
thus defined as Re = 2πf R2

c ν
−1 with ν the kinematic viscosity of the fluid.

As in previous works (Marié & Daviaud 2004; Ravelet et al. 2004, 2005), we
use water at 20 − 30 oC as working fluid to get Reynolds numbers in the range
6.3 × 104 � Re � 1.2 × 106. To decrease Re down to laminar regimes, i.e. to a few tens,
we need a fluid with a kinematic viscosity a thousand times greater than that of
water. We thus use 99 %-pure glycerol with kinematic viscosity 0.95 × 10−3 m2 s−1

at 20 oC (Hodgman 1947) and should be able to study the range 50 � Re � 900. To
cover a wide range of Reynolds numbers and match these two extreme ranges, we
use different mixes of glycerol and water, at temperatures between 15 ◦C and 35 oC.
The physical properties of these mixtures are given in table 1, where C is the mass
percentage of glycerol in the mixture. Solutions samples are controlled in a Couette
viscometer.
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C μ at 15 oC μ at 30 oC ρ Re range

99% 1700 580 1260 50–2000
93% 590 210 1240 130–5600
85% 140 60 1220 550–19000
81% 90 41 1210 840–28000
74% 43 20 1190 1800–56000
0% 1.1 0.8 1000 570000–1200000

Table 1. Dynamic viscosity μ (10−3 Pa s) at various temperatures, density ρ (kg m−3) at 20 oC
and achievable Reynolds number range for various mass concentrations C of glycerol in water.

The temperature of the working fluid is measured with a platinum thermoresistance
(Pt100) mounted on the cylinder wall {r =1; z =0}. To control this temperature,
thermoregulated water circulates in two heat exchangers placed behind the impellers.
Plexiglas disks can be mounted between the impellers and heat exchangers to reduce
the flow on the back side of the impellers. They are at typically 50 mm behind
the impellers. However, these disks reduce the thermal coupling: they are used in
turbulent water flows and removed at low Reynolds number.

2.2. Experimental tools, dimensionless measured quantities and experimental errors

Several techniques have been used in parallel: flow visualizations with light sheets
and air bubbles, torque measurements and velocity measurements.

Flow visualizations are made in vertical planes illuminated by approximately 2 mm
thick light sheets. We look at two different positions in the flow: either the central
meridian plane where the radial and axial components are visualized or in a plane
almost tangent to the cylinder wall where the azimuthal component dominates. Tiny
air bubbles (less than 1 mm diameter) are used as tracing particles.

Torques are measured using the current consumption in the motors given by the
servo drives and have been calibrated by calorimetry. Brushless motors are known
to generate electromagnetic noise, due to the pulse-width-modulation supply. We use
armoured cables and three-phase sinusoidal output filters (Schaffner FN5010-8-99),
and the motors are enclosed in Faraday cages, which enhances the quality of the
measurements. The minimal torques we measured are above 0.3 Nm, and we estimate
the error in the measurements to be ±0.1 Nm. The torques T will be presented in
the dimensionless form:

Kp = T
(
ρR5

c (2πf )2
)−1

.

Velocity fields are measured by laser Doppler velocimetry (LDV). We use a single-
component DANTEC device, with a He–Ne Flowlite Laser (wavelength 632.8 nm) and
a BSA57N20 Enhanced Burst Spectrum Analyser. The geometry of the experiment
allows us to measure at one point either the axial component Vz(t) or the azimuthal
component Vθ (t). Though the time-averaged velocity field V is not a solution of the
Navier–Stokes equations, it is a solenoidal vector field, and it is axisymmetric. We
thus use the incompressibility condition ∇ · V = 0 to compute the remaining radial
component Vr .

The measurements of the time-averaged velocity field are performed on a
{r × z} =11 × 17 grid, weighting velocities by the particles transit time, to remove
velocity biases as explained by Buchhave, George & Lumley (1979). This acquisition
mode does not have a constant acquisition rate, so we use a different method for
the acquisition of well-sampled signals to perform temporal analysis at single points.
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In this so-called dead-time mode, we ensure an average data rate of approximately
5 kHz, and the Burst Spectrum Analyser takes one sample every millisecond such
that the final data rate is 1 kHz. For practical reasons, this method is well-suited to
points close to the cylindrical wall, so we choose the point {r =0.9; z = 0} for the
measurements in figures 3, 4 and 5. The signals are re-sampled at 300 Hz by a ‘sample
and hold’ algorithm (Buchhave et al. 1979).

Let us now consider the experimental error in the Reynolds number value. The
speed servo-loop control ensures a precision of 0.5 % in f , and an absolute precision
of ±0.002 in the relative difference of the impeller speeds (f1 − f2)/(f1 + f2). The
main error in the Reynolds number is thus a systematic error that comes from the
estimation of the viscosity. Taking the variation of the viscosity with temperature to
be about 4 % for 1oC and the variation with concentration to be about 5 % for 1% of
mass concentration, we estimate the absolute error in Re as ±10 % (the temperature
is known within 1oC). However, the experimental reproducibility of the Reynolds
number is much higher than ±10%. In the range 100 � Re � 500 we are able to take
Re within ±5.

3. From order to turbulence: description of the regimes
This section describes the evolution of the flow from the laminar regime to the fully

developed turbulence, i.e. for 30 � Re � 1.2 × 106. This wide-range study has been
carried for the negative sense of rotation (−) of the propellers.

3.1. Basic state at very low Reynolds number

At very low Reynolds number, the basic laminar flow respects the symmetries of
the problem. It is stationary, axisymmetric and Rπ-symmetric. This state is stable at
Re = 90, for which we present a flow visualization in figure 2(a, b). In figure 2(a),
the light sheet passes through the axis of the cylinder. The visualized velocities are
the radial and axial components. The poloidal part of the flow consists of two toric
recirculation cells, with axial pumping directed towards the impellers.

The flow also contains two counter-rotating cells, separated by an azimuthal flat
shear layer, which can be seen in figure 2(b) where the light sheet is quasi-tangent
to the cylinder wall. Both the azimuthal and axial components vanishs in the plane
z = 0, which is consistent with the axisymmetry and the Rπ-symmetry. This flat shear
layer is sketched in figure 2(e). An LDV velocity field is presented in § 5 (figure 10c, d).

3.2. First instability – stationary bifurcation

The first instability for this flow has been determined by visualization and occurs
at Re = 175 ± 5 for both directions of rotation. The bifurcation is supercritical,
non-hysteretic, and leads to a stationary regime, with an azimuthal modulation of
wavenumber m =2. We present a visualization of this secondary state in figure 2(c), at
Re = 185. The axisymmetry is broken: one can see the m =2 modulation of the shear
layer, also sketched in figure 2(e). Note also that Rπ-symmetry is partly broken: the
bifurcated flow is Rπ-symmetric with respect to two orthogonal radial axes only. This
first instability is very similar to the Kelvin–Helmholtz instability. Nore et al. (2003)
made a theoretical extension of the Kelvin–Helmholtz instability in a cylinder. Their
model is based on the use of local shear-layer thicknesses and Reynolds numbers to
take into account the radial variations in the cylindrical case.

We observe this m =2 shear layer to rotate very slowly in a given direction with a
period 7500f −1. This corresponds to a very low frequency, always smaller than the
maximum measured non-symmetry of the speed servo-loop control between the two
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Figure 2. Visualization and schematics of the basic laminar flow for impellers rotating in
direction (−). The lighting is with a vertical light sheet. Pictures are integrated over 1/25 s with
a video camera, and small air bubbles are used as tracers. Picture height is H − 2h = 1.4Rc .
Laminar axisymmetric flow at Re = 90, meridian view (a). Views in a plane near the cylinder
wall at Re = 90 (b), Re = 185 (c) and Re = 345 (d). The development of the first m= 2
instabilities, steady undulation (c) and rotating vortices (d), is clearly visible in the shape of
the shear layer. We give sketches of the shear layer for these Reynolds numbers in (e).

independent motors (§ 2.2). This is probably the limit of the symmetry of our system,
i.e. the pattern is at rest in the slowly rotating frame where both frequencies are
strictly equal (see discussion in § 6.1). For convenience, we will describe the dynamics
in this frame.

The laminar m =2 stationary shear-layer pattern is observed up to typically Re �
300 where time-dependence arises.

To investigate the time-dependent regimes, we also performed precise velocity mea-
surements at a given point in the shear layer. We measure the azimuthal component
vθ at {r = 0.9; z = 0}, using the dead-time acquisition mode (see § 2).

Below, we describe and illustrate the dynamics observed and the building-up of
the chaotic and turbulent spectra. The next § 4 is complementary: we quantitatively
characterize the transitions as far as we can, discuss the mechanisms and finally
propose a global supercritical view of the transition to turbulence.

3.3. From drifting patterns to chaos

We present time series of the velocity and power spectral densities at five Reynolds
numbers in figure 3: Re = 330 ± 5, Re = 380 ± 5, Re =399 ± 5, Re =408 ± 5 and Re =
440 ± 5.

3.3.1. Oscillation at the impeller frequency

The point at Re =330±5 is the first at which a clear temporal dynamics is observed:
a sharp peak in the spectrum (figure 3b) is present at the impeller rotation frequency
fa = f , shown enlarged in the inset of figure 3(a). This oscillation exists for higher
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Figure 3. Temporal signals vθ (t) measured by LDV at {r = 0.9; z = 0} and power spectral
densities (PSD), for (a, b) Re = 330, (c, d) Re = 380, (e) Re = 399, (f) Re = 408 and (g,
h) Re = 440. fa is the analysis frequency whereas f is the impeller rotation frequency. Inset in
(a): zoom of the fast oscillation at frequency f . In (e), a small part of the signal is presented
with time magnification (×4) and arbitrary shift to highlight the modulation at 6.2f −1. Power
spectra are computed by the Welch periodogram method twice: with a very long window to
catch the slow temporal dynamics and with a shorter window to reduce fast-scale noise.
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Re with the same small amplitude: it is too fast to be visible on the long time series
of figure 3, but it is responsible for the large width of the signal line.

In comparison, a similar measurement performed at Re � 260 reveals a flat signal
with a very low flat spectrum with just a tiny peak, that is 1/1000 of the amplitude
measured at Re = 330, at fa = f ; we have no data between to check the evolution.

On the spectra, we observe the first harmonic, but do not see the expected blade
frequency 8f nor a multiple of it. So, it is not clear if it corresponds to the basic
fluid instability mode or just to a small precessing mode due to the misaligning of
the impeller axis or to mechanical vibrations transmitted to the fluid through the
bearings. Since the travelling-wave mode of the next section is much stronger and
richer in dynamics we will consider that the signal at fa = f is a ‘minor’ phenomenon,
i.e. a perturbation of the steady m = 2 mode.

In figure 3(a) the mean velocity is not zero, but around vθ = + 0.17 during the 600
time units of acquisition, i.e. during 600 disks rotations. This value of the velocity
has no special meaning and depends on the phase between the fixed measurement
point and the slowly drifting shear layer (§ 3.2). The measurement point stays on the
same side of the shear layer for this time series but, on much longer time scales, we
measure the typical m =2 shear-layer rotation period.

Further observation of the signal and spectrum of figure 3(a, b) reveals some energy
at low frequency around fa � f/30, corresponding to slowly relaxing modulations:
the slowness of this relaxation is the clear signature of the proximity of a critical
point.

3.3.2. Drifting/travelling waves

For 330 <Re < 389 the velocity signal is periodic with a low frequency fD . This is
illustrated at Re = 380 in figure 3(c, d). The mean velocity is now zero: the shear layer
rotates slowly such that the measurement point is alternately in the cell rotating with
the upper impeller (vθ > 0) and in the cell rotating with the lower impeller (vθ < 0).
Visualizations confirm that this corresponds to a travelling wave (TW) or a drifting
pattern and also show that the m = 2 shear layer is now composed of two vortices
(figure 2d) and thus merits the name ‘mixing-layer’. Along the equatorial line, the
parity is broken or the vortices are tilted (Coullet & Iooss 1990; Knobloch 1996).
The velocity varies between −0.3 � vθ � 0.3. The drift is still slow but one order of
magnitude faster than the drift described above for the ‘steady’ m =2 pattern: one
can see two periods during 600 time units, i.e. fD = f/300, which is very difficult
to resolve by spectral analysis owing to the shortness of the signal (see the caption
of figure 3). At Re =380 (figure 3c, d), the peak at the rotation frequency is still
present, but starts to spread and becomes broadband. The power spectral density at
frequencies higher than 3f decreases extremely rapidly to the noise level. Note that
the Rπ-symmetry remains only with respect to a pair of orthogonal radial axes which
rotates with the propagating wave.

3.3.3. Modulated travelling waves

For 389 <Re < 408 the signal reveals quasi-periodicity, i.e. modulated travelling
waves (MTW), shown in figure 3(e, f ) at Re = 399 and 408. The MTW are regular, i.e.
strictly quasi-periodic below Re = 400 and irregular above. The modulation frequency
(see the magnified (×4) part of the signal in figure 3e) is fM = f/(6.2 ± 0.2) whatever
Re, even above Re = 400. It is much faster than the drift frequency (fD ∼ f/200)
and movies show that it seems to be related to oscillations of the mixing-layer vortex
cores.
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3.3.4. Chaotic regime

The upper limit of the regular dynamics is precisely and reproducibly Re = 400 and
there is no hysteresis. From the visualizations, we observe that the m =2 symmetry
is now broken. The mixing-layer vortices, which are still globally rotating around
the cell in the same direction, also behave more and more erratically with increasing
Re: their individual dynamics includes excursions in the opposite direction as well
as towards one or other impeller. The velocity signal also loses its regularity (see
figure 3e–g).

When this disordered regime is well established, e.g. for Re = 440 (figure 3g), it can
be described as series of almost random and fast jumps from one side to the other of
the v = 0 axis. The peaks reached by the velocity are now in the range −0.4 � vθ � 0.4.
The spectral analysis of the signal at Re = 440 (figure 3h) no longer reveals any well-
defined frequency peaks. However, a continuum of highly energetic fluctuations at
low frequency, below fa = f and down to fa = f/100, emerges. A small bump at
the rotation frequency f is still visible, and a region of fast fluctuations above the
injection frequency also arises. Although we did not carried detailed Poincaré analysis
or equivalent and cannot clearly characterize a scenario, we find this transition and
this regime typical enough to call it ‘chaos’ (see also § 4.2).

3.4. From chaos to turbulence: building a continuous spectrum

Increasing the Reynolds number further, one obtains the situation depicted in figure 4.
The time spectrum is now continuous but still evolving. We describe the situations
below and above the impeller frequency f separately.

3.4.1. Slow time scales

The slow dynamics which has already been described at Re = 440 (figure 3g, h)
could be thought to depend only on the largest spatial scales of the flow. It is well
established above Re � 103 (figure 3b). The mean velocities corresponding to each side
of the mixing layer are of the order of ±0.6 at Re =1.0 × 103 and above (figure 4a,
c, g). The power spectral density below the injection frequency seems to follow a f −1

power law over two decades (see discussion § 6.2) for all these Reynolds numbers
(figure 4). The spectral density saturates below 10−2f .

3.4.2. Fast time scales

However, the fast time scales, usually interpreted as a trace of fluctuations of
small spatial scales evolve between Re = 1.0 × 103 and Re = 6.5 × 103. At the former
Reynolds number, there are few fast fluctuations decaying much faster than f −5/3

(figure 4b) and the intermittent changeovers are easy to identify in the temporal signal
in figure 4(a). If the Reynolds number is increased, the fast (small-scale) fluctuations
get increasingly bigger and follow a power law over a growing frequency range
(figure 4e, f ,h). The measured slope is of order of −1.55 over 1.5 decade, i.e. 10%
lower than the classical f −5/3. This value of the exponent could be ascribed to the
so-called ‘bottleneck’ effect (Falkovich 1994) and is compatible with the values given
by Lohse & Müller-Groeling (1995) (−1.56 ± 0.01) for a Taylor-microscale Reynolds
number Rλ � 100, which is an estimation for our flow based on the results of Zocchi
et al. (1994).

4. Quantitative characterization of the transitions
The various dynamic states encountered have been described and illustrated in the

previous section. Now, we wish to analyse some characteristic measurements, i.e. the
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Figure 4. (a, b) Temporal signal vθ (t) measured by LDV at {r = 0.9; z = 0} and power spectral
density at Re = 1.0 × 103. (c, d) Temporal signal and power spectral density at Re = 1.7 × 103.
(e, f ) Power spectral densities at 2.7 × 103 and 3.8 × 103. (g, h) Temporal signal and power
spectral density at 6.5 × 103. Solid lines in the power spectra plots are power-law eye-guides
of slope −1 and −5/3. Spectra are computed as explained in the caption of figure 3.

amplitude of the velocity fluctuations and their main frequencies, extract thresholds
and critical behaviours and then address the question of the nature of the reported
transitions.
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Figure 5. Variance of vθ (t) measured at {r =0.9; z = 0} vs. Re. Solid curve: nonlinear fit of
the form v2

θ rms = a × (Re − Rec)
1/2, fitted between Re = 350 and Re = 2500. The regression

coefficient is R2 = 0.990, and the fit gives Rec =328 ± 8 with 95 % confidence interval. The
intersection between this fit and the asymptotic value v2

θ rms � 0.27 gives Ret =3.3 × 103.

4.1. From order to turbulence: a global supercriticality

It is known that fully turbulent von Kármán flow can generate velocity fluctuations
of typically 50 % of the driving impeller velocity. So, we compute the variance v2

θ rms

of the LDV time series versus the Reynolds number. This quantity is equivalent to a
kinetic energy and can be referred to as the azimuthal kinetic energy fluctuations in
the mixing layer. With this method, we consider the broadband frequency response
of the signal. The results are reported in figure 5 for all the measurements performed
between 260 � Re � 6500. Except at the time-dependence threshold, this quantity
behaves smoothly: it can be fitted between Re = 350 and Re = 2500 with a law in the
square root of the distance to a threshold Rec � 330 (figure 5):

v2
θ rms ∝ (Re − Rec)

1/2.

Since we will show below that Rec is precisely the threshold for time-dependence,
we can make the hypothesis that v2

θ rms is a global order parameter for the transition
to turbulence, i.e. for the transition from steady flow to turbulent flow taken as a
whole. With this point of view the transition is globally supercritical.

4.2. Transitions from order to chaos

We now turn to the first steps in the transition to time dependence. We monitor the
main frequencies of the mixing-layer dynamics in the TW- and MTW-regimes (see
§ 3.3). In these regimes, even though only a few periods are monitored along single
time-series, we carefully estimate the period by measuring the time delay between
crossings of the v =0 axis. These values are shown in figure 6(a) with circles. In an
equivalent way, the periodicity of the travelling of the mixing-layer vortices on the
visualizations give complementary data, represented by squares on the same figure.

4.2.1. Onset of time-dependence

The drift frequency fD of the travelling waves behaves linearly with Re above a
threshold ReT W very close to 330. Both measurement methods agree though as the
visualizations have large error bars in Re due to the shortness of our records and
to a poorer thermal control, the fit is made on velocity data only. We observe some
imperfection in the quasi-periodic bifurcation, due to the pre-existing slow drift below
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Figure 6. (a) Low-frequency fD of the quasi-periodic regime of velocity vθ (t) measured
at {r = 0.9; z =0} (circles) and drift frequency of the m= 2 shear-layer pattern from flow
visualizations (squares with large horizontal error bars due to poorer temperature control).
The solid line is a linear fit of fD between the two thresholds ReT W = 330 and Rechaos = 400,
indicated by vertical dotted lines. (b) Enlargement of figure 5. The dashed line is a linear
fit of the lowest data between Re =350 and Re = 450. Close to the threshold, it crosses the
dash-dotted line which corresponds to the velocity due to the drift and estimates the level of
imperfection.

ReT W : we always observe the mixing layer to start rotating in the sense of the initial
drift.

We show in figure 6(b) an enlargement of figure 5, i.e. the amplitude of the kinetic
energy fluctuations. We observe that both the quadratic amplitude fit and the linear
frequency fit converge to exactly the same threshold ReT W = Rec =328. We can
conclude that the low-frequency mode at fa = fD bifurcates at Re = 330 ± 5 through
a zero-frequency bifurcation for fD .

The question is thus precisely how the amplitude behaves at onset. There is
obviously a lack of data in the narrow range 300 � Re � 350 (figure 6b). It is due to
the high temperature dependence of the viscosity in this regime (Reynolds number
varied quite fast even with thermal control) and to some data loss at the time of
the experimental runs. Despite this lack, we present these observations because of
the consistency of the different types of data – visualizations, LDV, torques – over
the wide Reynolds number range. The horizontal line v2

θ rms = 0.02 in figure 6(b)
corresponds to an amplitude of typically 0.15 for vθ , which is produced just by the
initial shear-layer drift (see the maximum speed in figure 3a). This value is in good
agreement with a linear extrapolation over the lower range of figure 6(b) and thus
again with an imperfect bifurcation due to the drift. If we reduce the drift by better
motor frequencies matching, the onset value of vθ will depend on the height of the
probe location and the parabola of figure 6(b) could perhaps be observed on the
m = 2 shear-layer modes.
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Figure 7. Dimensionless torque Kp vs. Re in a log-log scale for the negative sense of rotation
(−) of the impellers. The main data (◦) correspond to the symmetric (s)-flow regime described
here. For completeness, the high-torque branch (�) for Re � 104 corresponds to the (b) flow
regime (Ravelet et al. 2004), i.e. to the ‘turbulent bifurcation’ (see § 4.4). Since the two motors
do not deliver the same torque in this Rπ-symmetry-broken (b) flow, the average of both
values is plotted. Relative error in Re is ±10 %; absolute error of ±0.1 Nm in the torque.
Rec and Ret are the transition values computed from the fits of figure 5. The single points
displayed at Re =5 × 105 correspond to measurements in water, where Kp is extracted from a

fit of the dimensional torque by a + b × f 2 for 2 × 105 � Re � 9 × 105 (Ravelet et al. 2005).

4.2.2. Transition to chaos

The very sharp transition to chaos is observed for Re > Rechaos = 400. There is
no hysteresis. Just above the chaotic threshold in the MTW regime (figure 3f ), the
signal sometimes exhibits a few almost-quasi-periodic oscillations, still allowing us to
measure a characteristic frequency. The measured values have also been plotted on
figure 6(a) and are clearly above the linear fit. This could reveal a vanishing time
scale, i.e. a precursor for the very sharp positive/negative jumps of vθ reported in the
chaotic and turbulent regimes.

We do not clearly observe any evidence of mode locking between the present
frequencies which are in the progression f/200 → f/6.2 → f and there is no trace of
a sub-harmonic cascade on any of each. This could be linked to a three-frequency
scenario like Ruelle–Takens (Manneville 1990).

4.3. Transition to full turbulence

4.3.1. Torque data

Complementary to the local velocity data, information can be collected on spatially
integrated energetic data, i.e. on torque measurements Kp(Re) (figure 7). The low-
Reynolds-numbers viscous part will be described below (§ 5) as well as the high-torque
bifurcated branch (§ 4.4). In the high-Reynolds-number regimes, the torque reaches
an absolute minimum for Re � 1000 and becomes independent of Re above 3300.

4.3.2. From chaos to turbulence

Is there a way to quantitatively characterize the transition or the crossover between
chaos and turbulence? These seems to be no evidence of any special sign to indicate
the change between the two regimes. A possible empirical criterion would be the



Transition to turbulence in an inertially driven flow 353

–1.5 –1.0 –0.5 0 0.5 1.0 1.510–5

10–4

10–3

10–2

10–1

vθ

Figure 8. Probability density function (PDF) of vθ for 16 Reynolds numbers in the range
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completeness of the (fa/f )−1 low-frequency part of the spectrum, clearly achieved for
Re =1000 (figure 4b). This region also corresponds to the minimum of the Kp(Re)
curve (figure 7). One could propose that below this Reynolds number, the power
injected at the impeller rotation frequency mainly excites low frequencies belonging
to the ‘chaotic’ spectrum, whereas above Re � 1000 it also drives the high frequencies
through the Kolmogorov–Richardson energy cascade.

4.3.3. Inertial turbulence

The (Re − Rec)
1/2 behaviour can be fitted through the quasi-periodic and chaotic

regimes, up to Re ∼ 3000. Here, the azimuthal kinetic energy fluctuation level saturates
at v2

θ rms � 0.27, i.e. fluctuations of velocities at this point of the mixing layer are of
the order of 50 % of the impeller tip speed. This saturation is also revealed by the
probability density functions (PDFs) of vθ presented in figure 8. These PDFs are
computed for 16 Reynolds numbers in the range 2.5 × 103 � Re � 6.5 × 103. Note the
bimodal character of the PDFs: the two bumps, which are symmetric, correspond to
the two counter-rotating cells. Furthermore, all these PDFs collapse and are therefore
almost independent of Re in this range. This is also consistent with the spectral data
of figure 4(b–d) where the (fa/f )−1 slowest time-scale regions which contain most
of the energy, below f , appear similar for Re = 1.0 × 103 and above (figure 4). The
crossover Reynolds number Re t at which the kinetic energy of fluctuations saturates
in figure 5 is estimated by taking the intersection of the horizontal asymptote with
the fit: Re t = 3.3 × 103. This value corresponds precisely to the value at which the
asymptotic plateau is reached in the Kp vs. Re diagram (figure 7). In such an inertially
driven turbulent flow, the bulk dissipation is much stronger than the dissipation in
boundary layers and the global dimensionless quantities thus do not depend on the
Reynolds number past a turbulent threshold (Lathrop, Fineberg & Swinney 1992;
Cadot et al. 1997).

4.4. Higher Reynolds number: multistability and turbulent bifurcation

From all the observations reported above in the negative direction of rotation, we
conclude that the transition to turbulence is completed at Re t and that the azimuthal
kinetic energy fluctuation can be considered as an order parameter for the global



354 F. Ravelet, A. Chiffaudel and F. Daviaud

101 102 103 104 105 106 10710–3

10–2

10–1

100

Re

Kp
(s+)

(s–)

(b–)

Smooth

–1/4

Ret (–)Rec (–)

Transition

–1

Figure 9. Compilation of the dimensionless torque Kp vs. Re for various flows. All data
are for Rπ-symmetric von Kármán flows except the branch labelled (b−) (�): see caption of
figure 7 for details. ◦, direction of rotation (−); 
 direction of rotation (+); the solid line is
a nonlinear fit of equation Kp = 36.9 × Re−1 between Re = 30 and Re = 250. Some data for
flat disks of standard machine-shop roughness, operated in pure water up to 25 Hz (squares)
are also displayed with a Re−1/4 fit. A −1/4 power law is fitted for the positive direction of
rotation for 330 � Re � 1500 and is displayed between Re = 102 and Re = 104. Relative error
in Re is ±10 %; absolute error of ±0.1 Nm on the torque. Rec and Ret are the transition
values computed from the fits of figure 5.

transition, from the onset of time-dependence Rec =330 to the fully turbulent state
transition/crossover at Re t = 3.3 × 103, i.e. over a decade in Reynolds number.

In the inertial regime above Re t , the von Kármán flow driven by high-curvature
bladed impellers rotating in the negative direction presents another original behaviour:
Ravelet et al. (2004) have shown that the turbulent von Kármán flow can exhibit
multistability at high Reynolds number. To study and analyse this phenomenon, it
is necessary to introduce an additional parameter: the rotation velocity difference
�f = f2 − f1 between the two impellers. The so-called ‘turbulent bifurcation’ and
multistability are observed exclusively for the negative direction of rotation. So, the
�f = 0 regime presented here, called (s) for symmetric in Ravelet et al. (2004), can
be observed only if both motors are started together, i.e. if �f is kept equal to zero
at any time. Once a velocity difference is applied for long enough, depending of the
magnitude of |�f |, the flow changes abruptly to a one-cell-flow with axial pumping
towards one of the impellers only instead of towards each impeller. This new flow,
called (b) for bifurcated in Ravelet et al. (2004), strongly breaks the Rπ-symmetry,
has no middle shear layer and requires much higher torque from the motors: typically
3 times the value of (s)-flow, with a finite difference between the two motors. The
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mean reduced torque at �f = 0 is plotted with stars in figure 7: branches (s) and (b)
co-exist for Re � Rem = 104. To recover the Rπ-symmetric flow, one should stop the
motors or at least decrease Re below Rem.

Note that this multistability is only observed above Re t , i.e. for flows with a
well-developed turbulent inertial Kolmogorov cascade. Furthermore, cycles in the
parameter plane {Kp2 − Kp1; f2 − f1} have been made for various Re between
100 and 3 × 105 (Ravelet 2005). At low Reynolds numbers, Re � 800, this cycle is
reduced to a continuous, monotonic and reversible line in the parameter plane. The
first appearance of ‘topological’ transformations of this simple line into multiple
discontinuous branches of a more complex cycle is seen at Re � 5 × 103, in the
neighbourhood of the transitional Reynolds number Re t , and multistability for �f =0
is first observed for Re ∼ 104. The extensive study of this turbulent bifurcation with
varying Re deserves separate treatment and will be reported elsewhere.

From the above preliminary report of our results, we emphasize that the turbulent
bifurcation seems specific to fully developed turbulent flows. Whereas the exact
counter-rotating flow (�f =0) will never bifurcate (Ravelet et al. 2004), for a small
�f (0 < |�f |/f � 1) this turbulent bifurcation around Rem = 104 will correspond to
a first-order transition on the way to infinite-Reynolds-number dynamics: this flow
appears an ideal prototype of an ideal system undergoing a succession of well-defined
transitions from order to high-Reynolds-number turbulence.

4.5. The regimes: a summary

The next section concerns some aspects specific to the inertial stirring. Then follows a
discussion (§ 6) about the role of the symmetries and of the spatial scales of the flow
which can be read almost independently. The following summary of the observed
regimes and transitions is given to support the discussion.

Re < 175 : m =0, axisymmetric, Rπ-symmetric steady basic flow (§ 3.1),
175 < Re < 330 : m = 2, discretely Rπ-symmetric steady flow (§ 3.2),
330 < Re < 389 : m = 2, non Rπ-symmetric, equatorial-parity-broken travelling
waves (§ 3.3.2, § 4.2.1),
389 < Re < 400 : modulated travelling waves (§ 3.3.3),
400 < Re < 408 : chaotic modulated travelling waves (§ 3.3.3),
400 < Re � 1000 : chaotic flow (§ 3.3.4, § 4.2.2),
1000 � Re � 3300 : transition to turbulence (§ 3.4, § 4.3.2),
Re � 3300 : inertially driven fully turbulent flow (§ 4.3.3),
Re � 104 : multivalued inertial turbulence regimes (§ 4.4).

5. Viscous stirring vs. inertial stirring
We now focus on the details of the inertial stirring. So for, a single rotation sense, the

negative (−), has been studied. However, relevant information can be obtained from
the comparison of data from both senses of impellers rotation, which is equivalent
to having two sets of impellers with opposite curvature at any time in the same
experiment.

The guideline for this analysis is the global energetic measurements over the whole
Reynolds number range. The data for sense (−) have already been partly discussed
above (figure 7), but the full set is shown here in figure 9. At low Reynolds number
the two curves are identical, which means that the blades have no effect on the viscous
stirring. This is analysed in § 5.1. However, at high Reynolds number, there is a factor
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Figure 10. Comparison between a numerical simulation (a, b) performed with the code of
Nore et al. (2003) in a cylinder of aspect ratio Γ = 1.4 at Re = 120 and two experimental
velocity fields measured by LDV in direction (+) at Re = 130 (c, d) and in direction (−) at
Re = 120 (e, f ). The flow quantities which we present are in (a, c, e) the azimuthal velocity vθ

and in (b, d, f ) the poloidal stream function Ψ . Presenting the fields between 0 � r � 1 and
0 � z � 0.7 is sufficient due to axisymmetry and Rπ-symmetry. Blades or smooth disk are at
z = 0.7.

3 between the two curves, denoting very different inertial regimes, as discussed in
§ 5.2.

5.1. From viscous to inertial stirring

While Re � 300, the dimensionless torque Kp scales as Re−1. We are in the laminar
regime (Schlichting 1979) and the viscous terms are dominant in the momentum
balance. These regimes correspond to m =0 or m = 2 steady flows, with an eventual
slow drift (§§ 3.1 and 3.2).

From the power consumption point of view, both directions of rotations are
equivalent. The two curves – circles for direction (−) and left-pointing triangles for
direction (+) – collapse for Re � 300 onto a single curve with equation Kp = 36.9Re−1.

We performed velocity field measurements for the two flows at Re � 120–130
(figure 10c–f ). The differences between the two directions are minor. The order of
magnitude of the mean poloidal and toroidal velocities are the same to within 15 %
for both directions of rotation in the laminar regime, whereas at very high Re, they
strongly differ (by a factor 2) (Ravelet et al. 2005).

The flow is thus not sensitive to the shape of the impeller blades in the laminar
regime. To explain this, we make the hypothesis that for these large impellers of
radius 0.925Rc, fitted with blades of height h = 0.2Rc, the flow at low Re is equivalent
to the flow between flat disks with an effective aspect ratio Γ =(H − 2h)/Rc = 1.4.
Nore et al. (2004) numerically studied the flow between counter-rotating smooth
flat disks enclosed in a cylinder and report the dependence of the first unstable
mode wavenumber on the aspect ratio Γ = H/Rc. In their computations, the critical
wavenumber is m =1 for Γ = 1.8, whereas for Γ =1.4, it is m =2 as we observe in
our experiments.
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We thus compare in figure 10 our experimental velocity fields to a numerical
simulation performed by Caroline Nore (personal communication) at the same Re and
aspect ratio Γ = 1.4. The three fields are very close. A possible physical explanation
for this effect is the presence of viscous boundary layers along the resting cylinder
wall. The typical length scale of the boundary layer thickness can be estimated as
δ = Re−1/2. At the Reynolds number at which the impellers blades start to have an
effect, i.e. at Re � 300, this boundary layer thickness is of the order of δ � 6 mm, while
the gap between the impellers and the cylinder wall is 7.5 mm. It is also of the order
of magnitude of the minimum distance between two blades. For Re � 300, the fluid
is thus kept between the blades and cannot be expelled radially: it rotates with the
impellers. The stirring cannot be considered as inertial and does not depend on the
blade shape.

For Re � 300, the dimensionless torque starts to shift from a Re−1 law and
simultaneously there is a difference between the two senses of rotation: the inertial
stirring becomes dominant over the viscous stirring. Simultaneously, the steady flow
becomes unstable with respect to time-dependence (§§ 3 and 4 ).

5.2. Inertial effects

At high Reynolds number, we observe in figure 9 different behaviours for Kp for
the two senses of rotation. Sense (−) passes through a minimum for Re � 1000 and
then rapidly reaches a flat plateau above Re t = 3300 (see § 4.3), whereas sense (+)
asymptotically reaches a regime with only a third of the power dissipation of sense
(−). Together with the curved-blade data, figure 9 presents additional data for smooth
disks. The dimensionless torque Kp is approximately 30 times smaller for smooth disks
than for curved-bladed disks, and does not display any plateaux at high Reynolds
number but a Re−1/4 scaling law, as described by Cadot et al. (1997).

It is tempting to compare our curve Kp(Re) with the classical work of Nikuradse
(1932, 1933) consisting of a complete and careful experimental data set on the
turbulence in a pipe flow with controlled wall roughness. The data concern the
friction factor, equivalent to Kp , measured over a wide range between Re = 500 and
Re =106, which is shown to strongly depend on the wall roughness above Re � 3000.
The wall roughness is made up of controlled sand grains of diameter in the range
1/507 to 1/15 of the pipe radius, somewhat smaller than our blade height h/Rc = 1/5
which can be thought of as an effective roughness.

This data set has defied theoretical interpretation for decades and still motivates
papers. Recently, Goldenfeld (2006) and Gioia & Chakraborty (2006) proposed
phenomenological interpretations and empirical reduction of Nikuradse’s data. In
brief, both connect the very high-Reynolds-number inertial behaviour – a plateau
at a value which scales with the roughness to the power 1/3 – to the Blasius
Re−1/4 law for the dissipative region at intermediate Re. Goldenfeld (2006), using
a method from critical-point physics, finds a scaling for the whole domain above
Re � 3000, whereas Gioia & Chakraborty (2006) describe the friction factor over
the same Reynolds number range according to Kolmogorov’s phenomenological
model.

Compared with pipe flow results and models, our Kp(Re)-curve (figure 9) looks
very similar except for the region Gioia & Chakraborty (2006) called the energetic
regime. Indeed, in our specific case the basic flow is already dominated by vortices
of the size of the vessel. The negative direction (circles in figure 9) shows a minimum
followed by a plateau above Re t = 3300 and is in agreement with the general inertial
behaviour described above. However for the positive direction (left-pointing triangles
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in figure 9), the Kp curve seems to be continuously decreasing up to Re � 106. Looking

closer, one can observe a short Re−1/4 Blasius regime for Re between 300 and 1500,
highlighted by a fit in figure 9, followed by a very slow variation over the next two
decades: logarithmic corrections are still visible in the range 104 � Re � 5 × 104. For
this direction it is more difficult to define a threshold for the plateau observed in pure
water (Marié 2003). Nevertheless, this threshold should be of order 105, i.e. much
higher than with negative rotation.

A possible explanation of this strong difference may lie in the structure of the
flow inside the impellers, i.e. between the blades. Let us first assume that this flow is
dominated by what happens along the extremities of the blades, on which the pressure
is higher. Then we assume that the blade curvature leads to stable boundary layers in
positive rotation and to Görtler instability in negative rotation. The former develops
Blasius boundary layers, whereas the latter develops turbulent boundary layers with
many more vortices. Therefore, when the boundary layer detaches, somewhere along
the blades or at least at their end, the Blasius boundary layer in the positive rotation
sheds fewer turbulent vortices than the Görtler unstable layer does in the negative
rotation.

The above description could be sufficient to explain why the negative rotation is
able to produce a Kolmogorov cascade even at quite low Reynolds numbers near Re t .
However if, in the positive rotation case, the flow is only seeded by vortices produced
by the stable boundary layer which develops along the smooth blade faces, it is clear
that a Blasius Re−1/4 regime could be observed in this transition Reynolds range and
that a full inertial regime does not occur below a very high Reynolds number owing
to the very small roughness of the blade faces. This could be why the two curves
in figure 9 look so different: the lower one looks qualitatively like a low-roughness
boundary flow and the upper one like a high-roughness boundary flow. However, this
may only account for part of the flow driving: the resistive torque is much higher for
bladed impellers than for flat disks as shown in figure 9.

Our observation of the closed von Kármán turbulent flow is thus consistent with
the claim by Goldenfeld (2006) that full understanding of turbulence requires explicit
accounting for boundary roughness.

6. Discussion and conclusion
6.1. Symmetries and first bifurcations

As for many flows, the similarity of the flow behaviour at low Reynolds number
with an intermediate-size nonlinear system is obvious: breaking of spatial symmetry
first, then a temporal symmetry and finally transition to chaos by a quasi-periodic
scenario.

A comparable study has been carried both experimentally and numerically on von
Kármán flow with flat disk and variable aspect ratio by Nore et al. (2003, 2004,
2005). Our results agree well with their results on the first instability mode m = 2
if considering the fluid in the blade region as in almost solid-body motion, which
reduces the aspect ratio (see § 5.1). However, all thresholds appear at much lower Re
for bladed impellers than for flat disks: 175 vs. 300 for the first steady bifurcation and
330 vs. above 600 for the first temporal instability of the m = 2 mode, not observed
in Nore et al. (2005) study.

Another important difference between the two systems concerns symmetries.
Whereas Nore and collaborators deal with exact counter-rotation by using a single
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motor to drive both disks, our experimental setup uses two independent motors and
reaches only an approximation of a counter-rotating regime. As a consequence, the
Rπ-symmetry is stricto sensu broken at any Reynolds number and the symmetry
group of our problem is SO(2) instead of O(2). To evaluate the level of symmetry
breaking we can use a small parameter (Chossat 1993; Porter & Knobloch 2005), e.g.
ε = (f1 − f2)/(f1 + f2) which is between 10−4 and 10−3 in our runs.

Carefully controlling this parameter is an interesting issue: recently, in a very similar
von Kármán flow in the positive sense of rotation at high Re, de la Torre & Burguete
(2007) reported bistability and a turbulent bifurcation at exactly ε = 0 between two
Rπ-symmetric flows. For non-zero ε, the mixing layer lies slightly above or below
the equator and it randomly jumps between these two symmetric positions when ε is
carefully set to zero.

With our very small experimental ε, we satisfy theoretical predictions (Chossat
1993; Porter & Knobloch 2005) for the 1:2 spatial resonance or k − 2k interaction
mechanism with slightly broken reflection symmetry. Instead of mixed mode, pure
mode and heteroclinic cycles – specific to O(2) and carefully reported by Nore et al.
(2003, 2004, 2005) – we only observe drifting instability patterns, i.e. travelling waves
and modulated travelling waves, characteristic of SO(2). Also, the drift frequency
is very close to zero at the threshold Rec =330 (figure 6a), in agreement with the
prediction fD ∼ O(ε) (Chossat 1993; Porter & Knobloch 2005). This bifurcation to
travelling waves is similar to the one-dimensional drift instability of steady patterns,
observed in many systems (see e.g. Fauve et al. 1991). It relies on the breaking of the
parity (θ → − θ) of the pattern (Coullet & Iooss 1990): the travelling-wave pattern is
a pair of tilted vortices. The bifurcation is an imperfect pitchfork (Porter & Knobloch
2005).

Finally, the comparison can be extended to the travelling waves observed with flat
disks above the mixed and pure modes (Nore et al. 2003, 2005). The observed wave
frequencies are of the same order of magnitude in both cases, which led us to believe
that the same kind of hydrodynamics is involved , i.e. the blades again play a minor
role at these low Reynolds numbers. However, the frequency ratio between the basic
waves (TW) and their modulations (MTW) at onset is much higher (∼32) in our
experiment than in the numerical simulations (∼5) (Nore et al. 2003). This could be
due to the large number of blades.

We also consider the symmetry of the von Kármán flow with respect to the rotation
axis. In fact, the time-averaged flow is exactly axisymmetric while the instantaneous
flow is not, because of the presence of blades. However, axisymmetry can be considered
as an effective property at low Reynolds number and at least up to Re =175, since
we have shown that the blades have almost no effect on the flow (see § 5.1). With
increasing Re, the blades start playing their role and effectively break the axisymmetry
of the instantaneous flow.

Finally, we emphasize that the observations made below Re ∼ 400 closely resemble
the route to chaos through successive symmetry breaking for low-degree-of-freedom
dynamical systems. Our system can thus be considered as a small system (consistent
with the aspect ratio which is of order of 1) until the Reynolds number becomes high
enough to excite small dynamical scales in the flow.

6.2. The three scales of the von Kármán flow

The observations reported in this article from visualizations and spectra showed three
different scales. In particular, time-spectra contain two time–frequency domains,
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above and below the injection frequency fa = f . Let us first roughly sketch the
correspondence between temporal and spatial frequency scales of the whole flow:

(i) the smallest spatial frequencies, at the scale of the vessel, describe the basic
swirling flow due to the impeller and produce the intermediate frequency range, i.e.
the peak at fa = f in the time spectrum;

(ii) the intermediate spatial frequencies due to the shear-layer main instabilities
produce the lowest time frequencies;

(iii) the highest spatial frequencies produce, of course, the highest temporal
frequencies, i.e. the Kolmogorov region.

Taylor’s hypothesis is based on a linear mapping between space and time
frequencies. It is probably valid for the high part of the spectrum, but the mapping
might not be linear and even not monotonic for the low part. We discuss each part
of the spectrum in the two following sections.

6.2.1. The 1/f low-frequency spectrum

Once chaos is reached at Re =400, a strong continuous and monotonic low-
frequency spectrum is generated (figure 3h). In the chaotic regime below Re ∼ 1000,
the spectrum evolves to a neat −1 power law. Then, this part of the spectrum does
not evolve any more with Re.

Low-frequency −1 exponents in spectra are common and could be due to a variety
of physical phenomena: so-called ‘1/f noises’ have been widely studied, e.g. in the
condensed matter field (see for instance Dutta & Horn 1981).

For turbulent von Kármán flows driven by two counter-rotating impellers, this low-
time-scale dynamics has been already observed in liquid helium over at least a decade
by Zocchi et al. (1994) as well as for the magnetic induction spectrum in liquid metals
(Bourgoin et al. 2002; Volk, Odier & Pinton 2006). However, experiments carried out
in a one-cell flow – without turbulent a mixing layer – did not show this behaviour
(Marié 2003; Ravelet et al. 2004; Ravelet 2005). We therefore conclude that the 1/fa-
spectrum is related to the chaotic wandering of the mixing layer which statistically
restores the axisymmetry. Once again, the mixing layer slow dynamics dominates the
whole dynamics of our system, from momentum transfer (Marié & Daviaud 2004) to
the very high level of turbulent fluctuations (figures 5 and 8).

Furthermore, we can make the hypothesis that the −1 slope is due to the distribution
of persistence times on each side of the bimodal distribution (figure 8): the low-
frequency part of the spectrum can be reproduced by a random binary signal. Similar
ideas for the low-frequency spectral construction are proposed for the magnetic
induction in the von Kármán sodium (VKS) experiment (Ravelet et al. 2007). In both
cases, longer statistics would be needed to confirm this idea.

6.2.2. The turbulent fluctuations

We show above how the flow transitions from chaos to turbulence between
Re � 1000 and Re t = 3300. We label this region ‘transition to turbulence’ and observe
the growth of a power-law region in the time-spectra for fa >f . Does this slope trace
back the Kolmogorov cascade in the space-spectra?

As the classical Taylor hypothesis cannot apply to our full range spectrum, we
follow the local Taylor hypothesis idea (Pinton & Labbé 1994) for the high-frequency
part fa >f . Whereas Pinton & Labbé (1994) did not apply their technique (using
instantaneous velocity instead of a constant advection) to the extreme case of zero
advection, we think it can be applied here owing to the shape of the azimuthal
velocity PDF (figure 8). These distributions show first that the instantaneous zero
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velocity is a quite rare event: a local minimum of the curve. The modulus of velocity
spends typically 75 % of the time between 1

2
Vm and 3

2
Vm, where ±Vm are the positions

of the PDF maxima. The sign of the advection has no effect on the reconstructed
wavenumber. We can thus conclude that the frequency and wavenumber moduli can
be matched to each other at first order by a factor equal to the most probable velocity
|Vm| or by the mean of |vθ |, very close to each other. This approach is consistent with
a binary view of the local turbulent signal jumping randomly between two opposite
mean values, just as in the turbulent flow reversal model of, e.g. Benzi (2005). Then,
the high-frequency part of the spectrum is equivalent to the spectrum obtained by
averaging the spectra of every time-series between jumps, while the low-frequency
part is dominated by dynamics of the jumps themselves.

Owing to these arguments, we are convinced that an algebraic region dominates
the high-frequency part of the k-spectra above Re t . Observed exponents (−1.55) are
of the order of the Kolmogorov exponent, less than 10 % smaller in absolute value.
Similar exponents are also encountered at other locations in the vessel.

6.3. Conclusion and perspectives

The von Kármán shear flow with inertial stirring has been used for a global study of
the transition from order to turbulence. The transition scenario is consistent with a
globally supercritical scenario and this system appears to be a very powerful table-top
prototype for such a type of study. We have chosen to consider a global view over
a wide range of Reynolds number. This allowed us to make connections between
information from local (velocities) or global quantities (torques, flow symmetries), as
discussed in §§ 5.2, 6.1 and 6.2.

6.3.1. Further work

It would be interesting to increase the resolution of the analysis to the different
observed thresholds. It would also be worth performing the same wide-range study
for the other sense of rotation (+) or another pair of impellers. These studies would
enable a comparison of the inertial effects on the turbulent dynamics at very high
Reynolds number.

6.3.2. Controlling the mixing layer

Many results of the present study proceed from velocity data collected in the
middle of the shear layer and we have shown that this layer and its chaotic/turbulent
wandering can be responsible for the low-frequency content of the chaotic/turbulent
spectrum of the data.

With the slightly different point of view of controlling the disorder level, we have
modified the dynamics of the shear layer by adding a thin annulus located in the
mid-plane of the flow (Ravelet et al. 2005). This property was recently used in the von
Kármán Sodium (VKS) experiment conducted at Cadarache, France and devoted
to the experimental study of dynamo action in a turbulent liquid-sodium flow. A
dynamo has effectively been observed for the first time in this system with a von
Kármán configuration using, among other characteristics, an annulus in the mid-
plane (Monchaux et al. 2007) and is sensitive to the presence of this device. Moreover,
clear evidence has been found that the mixing-layer large-scale patterns have a strong
effect on the magnetic field induction at low frequency (Volk et al. 2006; Ravelet et al.
2007). Further studies of this effect in water experiments are in progress.
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6.3.3. Statistical properties of the turbulence

Studies of the von Kármán flow currently in progress involve both a wider range of
data in space, with the use of stereoscopic 3-components particle image velocimetry
(SPIV) and a wider range of Reynolds number.

Whereas the SPIV is slower than LDV and will not allow time-spectral analysis, it
offers a global view of the flow and allows characterization of statistical properties of
the turbulent velocity. Guided by the behaviour of the variance of the local azimuthal
velocity revealed in the present article (figure 5), we expect to analyse the evolution
of the spatio-temporal statistical properties with Re. Such a study is very stimulating
for theoretical advances in statistical mechanics of turbulence in two-dimensional
(Robert & Sommeria 1991; Chavanis & Sommeria 1998), quasi-two-dimensional
(Bouchet & Sommeria 2002; Jung, Morrison & Swinney 2006) or axisymmetric flows
(Leprovost, Dubrulle & Chavanis 2006; Monchaux et al. 2006).

We are particularly indebted to Vincent Padilla and Cécile Gasquet for building and
piloting the experiment. We acknowledge Caroline Nore for making her simulations
available, Arnaud Guet for his help with the visualizations and Frédéric Da Cruz
for the viscosity measurements. We have benefited from very fruitful discussions with
B. Dubrulle, N. Leprovost, L. Marié, R. Monchaux, C. Nore, J.-F. Pinton and R. Volk.
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Bourgoin, M., Marié, L., Pétrélis, F., Gasquet, C., Guigon, A., Luciani, J.-B., Moulin, M.,

Namer, F., Burguete, J., Chiffaudel, A., Daviaud, F., Fauve, S., Odier, P. & Pinton, J.-F.
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